第一社区 门户 奇闻奇事 查看内容

多维空间,你能理解到第几维?视频文字版

2016-03-03| 查看: 7553| 评论: (0)

维度,又称维数,是数学中独立参数的数目。在物理学和哲学的领域内,指独立的时空坐标的数目。


下面的视频为你解释一下从0维空间到10维空间,大家试试看 你能理解到第几维空间?


0维:是一点,没有长度。


1维:是线,只有长度。2维是一个平面,是由长度和寛度(或曲线)形成面积。3维是2维加上高度形成体积面。通常的理解是“点是0维、直线是1维、平面是2维、体是3维”。实际上这种说法中提到的概念是“前提”而不是“被描述对象”,被描述对象均是“点”。故其完整表述应为“点基于点是0维、点基于直线是1维、点基于平面是2维、点基于体是3维”。

再进一步解释,在点上描述(定位)一个点就是点本身,不需要参数;在直线上描述(定位)一个点,需要1个参数(坐标值);在平面上描述(定位)一个点,需要2个参数(坐标值);在体上描述(定位)一个点,需要3个参数(坐标值)。维度是指一种视角,而不是一个固定的数字;是一个判断、说明、评价和确定一个事物的多方位、多角度、多层次的条件和概念。0维:一点。1维:一条线,没有问题。


2维:一个平面,没有问题。但为了高维度时解释上的方便,作者用另一个方式来说明二维:分离。即:另外分出一条线。


3维:一个空间,同样很直观,因为我们就是眼睛所见就是3维的空间。但为了高维度时解释方便,作者同样用了另一个方式来诠释:摺起。一个3维空间下摺起的动作能让2维空间的点跳到另一个2维空间的点。(延伸:一个 n 维空间下的摺起动作能让 (n - 1) 维空间的点跳到另一个 (n - 1) 维空间的点,这个观念之后将会被继续使用到。)

4维:哦,我们要加上时间的概念了。我们的眼睛看到的是三维的世界,但如果有一种生物看得一个人由出生到死亡的一生,那麼3维下的时间对它而言就不是时间了,3维的时间对此生物而言相当於是几何上的第四个维度。这个生物会看到一条波动著的4-D长蛇,一条纪录著一个人由出生到死亡的长蛇。这里作者举了个让人比较容易理解的例子。小时候应该很多人在课本每一页的角落画上一个个的人,每个人都只有一点点动作上的小差异,当把书本快速的翻过时,这些小人合起来就像在做动作一样。如果我们把这一页页都拆开,就可以看到这个2D小人的一生了。对这个2D的小人而言,第三个维度是时间,而对我们这些3D人而言,这第三个维度只是书本的厚度。这件事情暗示著:对 n 维世界的人而言,第 n + 1 个维度是时间,但对於 n + 1 维世界的人而言,第 n + 1 维也只是空间上的一个维度而已。因此,2D小人的时间对我们 (3D世界的人) 来说是厚度 (空间上的一个维度),我们 (3D世界的人) 所认为的时间,其实在 4D 世界的人眼中只是一个空间上的维度,而 4D 世界的人眼中的时间,也只是 5D 世界的人眼中的一个空间上的维度。好,那麼什麼是4D呢? 一条线。没错,一条线! 只是这条线上的每个点分别代表了人 (3D世界的人) 一生中的某一个时点及他的所在位置。

5维:分离。一个人的一生中有无数的选择。我们常说,如果当时我能怎麼样,现在我就可以如何如何了。是的,5维就是把这所有可能的选择给包容进来。因此,从4D的线上分离出无数条线 (选择),就构成了第5维。

6维:摺起。类似於3维的概念,6维能让5维空间中的点自由跳跃。因此,如果一个3D世界的人对现在的生活不满意,假使他拥有6维空间的能力,则他能够自由的变成5维空间中任何一个他所满意的位置。


7维:前面在4维到6维举的例子都是一个人的一生。现在我们把这个概念放大来看,也可以想像成是宇宙的一生:「从大爆炸宇宙诞生,各种可能性下所产生的各种变化,一直到宇宙灭亡为止。」我们把前面这串叙述,看成7维空间的一个点,如果能有两个这种点,我们就能构筑出7维空间了 (again, 又是一条线)。问题是:「从大爆炸宇宙诞生,各种可能性下所产生的各种变化,一直到宇宙灭亡为止。」这句话本身就代表无限大了,怎麼会有两个无限大的点呢?作者的解释是:如果大爆炸的一开始初始条件不同,那麼就会有不一样的宇宙诞生。因此,第七维的空间可以想成是两个不同初始条件的宇宙连成的一条线。


8维:应该可以猜得到那两个字是什麼了:「分离」。从7维的线上分离出来的线,构成第8维。更精确地说,就是各种不同的初始条件下形成的宇宙所组成的集合。


9维:摺起。第9维的摺起动作能让第8维空间内的点跳跃。因此到了第9维的空间,我们已经能够自由穿梭在任何一个宇宙的任何一个时点的任何一个3度空间了。酷!

10维:呼,终於走到这一步了。在第10维,我们将所有可能的宇宙中的所有的时间下的所有的3度空间,想像成10维空间下的一个点。这个点已经包含了一切了。你还能想像另一个「所有可能的宇宙中的所有的时间下的所有的3度空间」的点吗?


相关阅读

最新评论

您需要登录后才可以评论 登录 | 立即注册

发表新贴 返回顶部